Asian option

Math 622

February 25, 2014

Reading material: Ocone's Lecture note 7, Shreve's Section 7.5

1 Preliminary discussion

Let $S(t)$ satisfies

$$
\begin{aligned}
d S_{t} & =r S_{t} d t+\sigma\left(t, S_{t}\right) S_{t} d W_{t} \\
S(0) & =x>0
\end{aligned}
$$

Denote for $t \in[0, T]$

$$
\begin{aligned}
Y(t) & =\int_{0}^{t} S(u) d u \\
S_{\text {ave }}(t) & =\frac{Y_{t}}{t}
\end{aligned}
$$

Consider the Generalized Asian Option:

$$
V_{T}=G\left(S(T), S_{\text {ave }}(T)\right) .
$$

Depends on the specific form G takes, we have the following types of Asian options:
(i) Average price call: $G(x, y)=(y-K)^{+}$;
(ii) Average price put: $G(x, y)=(K-y)^{+}$;
(iii) Average strike call: $G(x, y)=(x-y)^{+}$;
(iv) Average price put: $G(x, y)=(y-x)^{+}$.

By risk neutral pricing

$$
\begin{aligned}
V_{t} & =E\left\{e^{-r(T-t)} G\left(S_{T}, S_{\text {ave }}(T)\right) \mid \mathcal{F}(t)\right\} \\
& =E\left\{\left.e^{-r(T-t)} G\left(S_{T}, \frac{Y_{T}}{T}\right) \right\rvert\, \mathcal{F}(t)\right\}
\end{aligned}
$$

In the Lookback Option, we have discussed that the process $(S(t), Y(t)$) (where $\left.Y(t):=\max _{[0, t]} S_{u}\right)$ has Markov property. The same principle applies here

Principle: If $S(t), t \geq 0$ is Markov with respect to $\mathcal{F}(t)$ and $Y(t)=\int_{0}^{t} S(u) d u$ then $\{Y(t), S(t)\}$ is also Markov with respect to $\mathcal{F}(t)$.

The intuitve reason why this principle is true is because we can write

$$
Y(T)=Y(t)+\int_{t}^{T} S(u) d u
$$

Therefore, intuitively, to compute the conditional expectation of $Y(T)$ on $\mathcal{F}(t)$, we only need the value of $Y(t)$ plus the conditional expectation of $S(u)$ given $\mathcal{F}(t)$, which also only depends on $S(t)$ by the assumption on Markov property of S. In other words, the conditional expectation of $Y(T)$ on $\mathcal{F}(t)$ only depends on $S(t), Y(t)$, thus the process $S(t), Y(t)$ is Markov.
Note here however that $Y(t)$ by itself is generally NOT a Markov process (same as the conclusion we draw for the running max of $S(t)$ in the Lookback option).
Thus there exists $v(t, x, y)$ such that

$$
V(t)=v(t, S(t), Y(t))
$$

where

$$
\begin{aligned}
v(t, x, y) & =E\left\{\left.e^{-r(T-t)} G\left(S_{T}, \frac{Y_{T}}{T}\right) \right\rvert\, S(t)=x, Y(t)=y\right\} \\
& =E\left\{\left.e^{-r(T-t)} G\left(S_{T}, \frac{y+\int_{t}^{T} S_{u} d u}{T}\right) \right\rvert\, S(t)=x\right\}
\end{aligned}
$$

To be able to proceed, one would need the knowledge of the joint distribution between $\int_{t}^{T} \sigma\left(u, S_{u}\right) d W u$ and $\int_{t}^{T} S_{u} d u$. So without further assumption on S, this is the ultimate simplification that can be achieved to represent the option price as conditional expectation.

Remark 1.1. If G is a linear function in x, y, however, then we can write down an explicit formula for $v(t, x, y)$. Do you see why? (Say for example, $G(x, y)=y-x$).

2 PDE for Asian options

To quote from professor Ocone's notes: An explicit formula for an option of Asian type is not known, even if S follows the standard Black-Scholes (that is σ is a constant) model. Therefore, it is important do drive a PDE with boundary conditions for $v(t, x, y)$ defined above.
Note that here, unlike the case of Lookback option, the process $Y(t)$ is an absolutely continuous process. Indeed, its dynamics is

$$
\begin{aligned}
d Y(t) & =S(t) d t \\
Y(0) & =0
\end{aligned}
$$

Therefore, applying Ito's formula and setting the "dt" term to 0 is no problem:

$$
d e^{-r t} v\left(t, S_{t}, Y_{t}\right)=e^{-r t} \mathcal{L} v\left(t, S_{t}, Y_{t}\right) d t+e^{-r t} v_{x}\left(t, S_{t}, Y_{t}\right) S_{t} \sigma\left(t, S_{t}\right) d W t
$$

where
$\mathcal{L} v(t, x, y):=-r v(t, x, y)+v_{t}(t, x, y)+v_{x}(t, x, y) r x+v_{y}(t, x, y) x+\frac{1}{2} v_{x x}(t, x, y) \sigma^{2}(t, x) x^{2}$.
Recall that from the discussion on the quadratic variation and covariation in Lecture 6a, since $Y(t)$ is a function of bounded variation, $\langle Y\rangle_{t}=0$ and $\langle S, Y\rangle_{t}=0$. Thus since $e^{-r t} v\left(t, S_{t}, Y_{t}\right)$ is a martingale, we set the $d t$ term to 0 and get

$$
\begin{aligned}
& -r v(t, x, y)+v_{t}(t, x, y)+v_{x}(t, x, y) r x+v_{y}(t, x, y) x+\frac{1}{2} v_{x x}(t, x, y) \sigma^{2}(t, x) x^{2}=0 \\
& 0<x, y<\infty, 0 \leq t<T
\end{aligned}
$$

But we also need to impose boundary conditions.
(i) At $t=T$ this is clear:

$$
\begin{equation*}
v(T, x, y)=G\left(x, \frac{y}{T}\right) \tag{1}
\end{equation*}
$$

(ii) At $x=0$: when the stock price hits 0 , it stays there: $S(u)=0, u \geq t$, so $Y(u)$ remains a constant on $[t, T]$ as well. Thus

$$
\begin{aligned}
v(t, 0, Y(t)) & =E\left(\left.e^{-r(T-t)} G\left(S(T), \frac{Y_{T}}{T}\right) \right\rvert\, \mathcal{F}(t)\right) \\
& =E\left(\left.e^{-r(T-t)} G\left(0, \frac{Y_{t}}{T}\right) \right\rvert\, \mathcal{F}(t)\right)=e^{-r(T-t)} G\left(0, \frac{Y_{t}}{T}\right)
\end{aligned}
$$

This implies that

$$
\begin{equation*}
v(t, 0, y)=e^{-r(T-t)} G\left(0, \frac{y}{T}\right) . \tag{2}
\end{equation*}
$$

(iii) It's now natural to finish with the boundary condition at $y=0$. However, note that

$$
v(t, x, 0)=E\left(\left.e^{-r(T-t)} G\left(S(T), \frac{\int_{t}^{T} S_{u} d u}{T}\right) \right\rvert\, S(t)=x\right),
$$

but in general we don't know what this is.
(iv) We instead then tries to seek the "boundary condition" for y at ∞. Suppose that

$$
\lim _{y \rightarrow \infty} G(x, y)=0 .
$$

Note that the average price put: $G(x, y)=(K-y)^{+}$and the average strike call: $G(x, y)=(x-y)^{+}$satisfy this condition. Then we have

$$
\lim _{y \rightarrow \infty} v(t, x, y)=E\left(\left.e^{-r(T-t)} \lim _{y \rightarrow \infty} G\left(S(T), \frac{y+\int_{t}^{T} S_{u} d u}{T}\right) \right\rvert\, S(t)=x\right)=0
$$

Thus we can set the condition

$$
\begin{equation*}
\lim _{y \rightarrow \infty} v(t, x, y)=0 \tag{3}
\end{equation*}
$$

Then we have the following PDE for the Asian option, assuming the condition $\lim _{y \rightarrow \infty} G(x, y)=0$

$$
\begin{aligned}
& -r v(t, x, y)+v_{t}(t, x, y)+v_{x}(t, x, y) r x+v_{y}(t, x, y) x+\frac{1}{2} v_{x x}(t, x, y) \sigma^{2}(t, x) x^{2}=0, \\
& 0<x, y<\infty, 0 \leq t<T \\
& v(T, x, y)=G\left(x, \frac{y}{T}\right) ; \\
& v(t, 0, y)=e^{-r(T-t)} G\left(0, \frac{y}{T}\right) ; \\
& \lim _{y \rightarrow \infty} v(t, x, y)=0 .
\end{aligned}
$$

But then what about the average price call: $G(x, y)=(y-K)^{+}$and the average strike put: $G(x, y)=(y-x)^{+}$? Intuitively we want to take $\lim _{y \rightarrow-\infty} G(x, y)=0$.

However, with our current definition of Y_{t}, this does not make sense, since $Y_{t} \geq 0$. So we need to extend our model by defining:

$$
Y(t)=Y(0)+\int_{0}^{T} S(u) d u
$$

where $Y(0)$ is a valued specified by the option contract, which can be negative or positive or zero.
The payoff function G becomes

$$
G\left(S(T), S_{a v e}(T)\right)=G\left(S(T), \frac{1}{T}\left[Y(0)+\int_{0}^{T} S_{u} d u\right]\right)
$$

and the option value at time t is

$$
v(t, x, y)=E\left\{e^{-r(T-t)} G(S(T), Y(T)) \mid S(t)=x, Y(t)=y\right\}
$$

as before. Adding a constant $Y(0)$ at time $t=0$ clearly does not change the Markov property of V_{t}. Note that since $Y(0)$ can take any value (positive, negative, zero), y here also can take any value (positive, negative, zero).
In words, what we did here is just allow flexibility for dicussing our function $v(t, x, y)$ as $y \rightarrow-\infty$. But then arguing exactly as before, under the assumption that $\lim _{y \rightarrow-\infty} G(x, y)=0$ we have

$$
\lim _{y \rightarrow-\infty} v(t, x, y)=E\left\{\left.e^{-r(T-t)} \lim _{-y \rightarrow \infty} G\left(S(T), \frac{y+\int_{t}^{T} S_{u} d u}{T}\right) \right\rvert\, S(t)=x\right\}=0
$$

Then we have the following PDE for the Asian option, assuming the condition $\lim _{y \rightarrow-\infty} G(x, y)=0$

$$
\begin{aligned}
& -r v(t, x, y)+v_{t}(t, x, y)+v_{x}(t, x, y) r x+v_{y}(t, x, y) x+\frac{1}{2} v_{x x}(t, x, y) \sigma^{2}(t, x) x^{2}=0 \\
& 0<x<\infty,-\infty<y<\infty, 0 \leq t<T \\
& v(T, x, y)=G\left(x, \frac{y}{T}\right) \\
& v(t, 0, y)=e^{-r(T-t)} G\left(0, \frac{y}{T}\right) \\
& \lim _{y \rightarrow \infty} v(t, x, y)=0 .
\end{aligned}
$$

Note the change of domain for y on the first equation. Now y is defined on $(-\infty, \infty)$, not just $[0, \infty)$.

